الآثار البيئية للتلوث البحري في البحرين

د. إسماعيل المدني *
المهندس/ عبد الجليل زينل **

مقدمة

البحر من الموارد الطبيعية الأساسية والهامة لدولة البحرين، فهو مصدر غذائي رئيسي، ووسيلة للنقل، وتعتمد عليه بعض أنواع الصناعات، وكذلك يعتبر البحر من أهم المناطق السياحية للترفيهية والترويج وممارسة الرياضة المائية. فكان من الضروري الحفاظ على هذا المورد الثمين، وحمايته من تدخلات الإنسان غير المسبوقة، ولاسيما السواح حيث إنها تتأثر كثيرا بالتغيرات الطبيعية وغير الطبيعية حولها.

ومياه الخليج العربي كغيرها من مياه البحار والمحيطات الأخرى، لم تسلم من استغلال الإنسان العشائري وأنشطته المتزايدة، ولم توضع الوسائل والأساليب الكفيلة بحمايتها والمحافظة عليها. فالمصانع تنشأ عند شواطئ البحر، والملاهي تصب نفاياتها فيه، وال nghfط السليبة والسائئة تتفاقم فيه، وتسربان النفط تلوث مياهه. ولا شك أن لهذه الممارسات والأنشطة نتائج سلبية على البيئة البحرية.

لمحة عن دولة البحرين

تتميز دولة البحرين بأنها الدولة العربية الوحيدة التي تتكون من أرخبيل من الجزر، وتضم 33 جزيرة تتفاوت في مساحتها تفاوتا كبيرا، وتبلغ مساحة دولة البحرين 685 كيلومترا مربعا موزعة على حسب الجدول رقم (1)

وت在床上 البحرين مركزا وسطا في مياه الخليج العربي على بعد 25 كيلومترا من الساحل الشرقي للمملكة العربية السعودية. ويقدر تعداد السكان حسب إحصائيات 1981 بـ 358.857 نسمة حيث بلغت نسبة البحريين 69.97% ونسبة غير البحريين 30.03%

الجدول رقم (2) يبين الازدياد المطرد في عدد السكان منذ عام 1941.

جدول رقم (1)

<table>
<thead>
<tr>
<th>الجدول رقم (1)</th>
<th>مساحة دولة البحرين حسب المناطق والمجزر 1983</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>مساحة دولة البحرين حسب المناطق والمجزر 1983</td>
</tr>
</tbody>
</table>

* أستاذ مساعد بكلية الخليج للتكنولوجيا- جامعة البحرين.
** مهندس بكلية الخليج للتكنولوجيا - جامعة البحرين.

دراسات الخليج والجزيرة العربية - العدد 50
المساحة (كيلو متر مربع)
الجزيرة
المنطقة
البحرين 3.02 الحد
المحرق واسري 16.03 المحرق
سترة 24.45 المنامة
النبي صالح 18.14 جد حفص
الشمالية 36.54
أم النعسان 28.48 ستة
الوسطي 35.20 مدينة عيسى
قشار القليعة 12.36 الرفاع
أم الصبان 288.89 الغربية
حوار 49.96

جدول رقم (2)
عدد سكان البحرين منذ عام 1941

<table>
<thead>
<tr>
<th>عدد السكان</th>
<th>العام</th>
</tr>
</thead>
<tbody>
<tr>
<td>98970</td>
<td>1941</td>
</tr>
<tr>
<td>182203</td>
<td>1967</td>
</tr>
<tr>
<td>211078</td>
<td>1971</td>
</tr>
<tr>
<td>358857</td>
<td>1981</td>
</tr>
</tbody>
</table>

ومناخ البحرين حار جاف، إذ يبلغ متوسط هطول الأمطار 60 مم في السنة. أما الرياح السائدة فهي الشمالية الغربية والتي تجلب الهواء الرطب في الشتاء، وقد تهب معها عاصفة رملية من المملكة العربية السعودية وتبلغ سرعتها أكثر من 14 عقدة أي حوالي 7 متر في الثانية. أما في فصل الصيف فتهب الرياح الجنوبية الحارة (الكوس) وأحيانا تكون محملة بالرمال.

المناطق الصناعية

تتركز أهم الأنشطة الصناعية على الساحل الشرقي لجزيرة البحرين، وخصوصا منطقة ميناء سلمان ومنطقة شمال سترة والمناطق القريبة من مصفاة النفط وجنوب مصنع الألمنيوم (ألبا).
وتوجد في البحرين مناطق مخصصة لإنشاء الصناعات المختلفة عليها، والمساحة الكلية المخصصة للصناعة والتخزين تقدر بحوالي 900 هكتار وهي مقسمة كالتالي:

1- 550 هكتاراً للصناعات القابلة.
2- 150 هكتاراً للصناعات الخفيفة.
3- 100 هكتاراً للتخزين.
4- 100 هكتاراً للإضاءة.

ويوجد في البحرين مناطق صناعية كثيرة موزعة في مناطق معينة، والجدول رقم (3) يبين أسماء هذه المناطق الصناعية والمساحة التقديرية لبعض هذه المناطق (2)، والشكل رقم (1) يوضح موقع المناطق الصناعية في البحرين، كما يبين تقسم البحرين إلى أربع مناطق رئيسية تتركز فيها أغلب الصناعات.

جدول رقم (3)

<table>
<thead>
<tr>
<th>المنطقة الصناعية</th>
<th>المساحة (هكتار)</th>
<th>تاريخ تطويرها</th>
</tr>
</thead>
<tbody>
<tr>
<td>ميناء سلمان +</td>
<td>49</td>
<td>1970</td>
</tr>
<tr>
<td>المعابر والنويدرات</td>
<td>85</td>
<td>1975</td>
</tr>
<tr>
<td>جنوب اليا</td>
<td>56</td>
<td>1975</td>
</tr>
<tr>
<td>شمال مصفاة النفط</td>
<td>31</td>
<td>1975</td>
</tr>
<tr>
<td>شمال سترة +</td>
<td>242</td>
<td>1979</td>
</tr>
<tr>
<td>دوار سترة</td>
<td>6</td>
<td>1980</td>
</tr>
<tr>
<td>عراد</td>
<td>4</td>
<td>1980</td>
</tr>
<tr>
<td>جنوب الحد +</td>
<td>170</td>
<td>1980</td>
</tr>
<tr>
<td>منطقة الكسارات</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>سلمانية</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

+ مناطق مردومة جزئيا أو كليا.

فيها الأنشطة الصناعية

درست الخليج والجزيرة العربية – العدد 50
شکل رقم (1)
موقع المناطق الصناعية في البحرين
مصادر التلوث البحري

ستنطوع في هذا الجزء من الدراسة أهم مصادر التلوث البحري في البحرين وتاثيراته على البيئة البحريّة (3).

1- عمليات الردم والحفر البحري

لقد أدى التطور السريع في الصناعة والزراعة وازدياد عدد السكان (انظر الجدول رقم 2) إلى حاجة البلاد لتخصيص مساحات كبيرة من الأراضي لاستيعاب هذه الأنشطة حيث أن مساحة البحرين صغيرة فقد كان من الضروري القيام بعمليات الردم والحفر البحري. ومن الجدول رقم (4) نستخلص التغيير في مساحة البحرين خلال العشر سنوات الماضية نتيجة لعمليات الردم والحفر. كما يبين الجدول رقم (2) المناطق الساحلية المرادة ومعايتها (4).

جدول رقم (4)
التغيير في مساحة البحرين

<table>
<thead>
<tr>
<th>العام</th>
<th>المساحة (كيلو متر مربع)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975</td>
<td>661.87</td>
</tr>
<tr>
<td>1983</td>
<td>684.98</td>
</tr>
<tr>
<td>1984</td>
<td>687.72</td>
</tr>
<tr>
<td>1985</td>
<td>690.86</td>
</tr>
</tbody>
</table>

وقد قدر مجموعة المساحات التي استعملت وحفرت في البحر كالتالي (5):

- المساحة الكلية التي تم ردمها حوالي 3000 هكتار
- المساحة الكلية التي تم حفرها حوالي 1350 هكتار
- مجموع كمية المواد المستخدمة في الردم أكثر من 60.000.000 متر مكعب.

ويتم الردم في المناطق الساحلية الضحلة التي يحصر عنها الماء أثناء الجزر. وقد كان الردم يتم في السابق باستخدام الفضلات والأنقاض التي تحتوي على مواد البناء والقمامة. أما الآن، فكثر مواد الردم من الرمل والطين والصخور والحجر الجيري والتي تنجز من البحر نتيجة لتكسير الطبقات تحت السطحية. وأكثر أعمال الحفر تم بواسطة حفارات قاطعة ساقطة وبعضها تتم بواسطة حفارات شفط جرارة.

التأثيرات البيئية لعمليات الردم والحفر البحري.

وتؤثر عمليات الردم والحفر على البيئة البحري بصورة مباشرة وغير مباشرة، إذ أن معظم سواحل البحرين تتكون من صخور مختلطة ورمال قاعية وبالأسفل على طول السواحل الشمالية والشماليّة الشرقية وعلى امتداد سواحل جزيرة سترة (6) وتمتاز هذه السواحل باحتوائها على حشائش بحرية.
وتتمثل أهمية الحشائش البحرية في النقطة الآتية:

1- هذه الحشائش تعتبر مصدر غذاء لمختلف أنواع الكائنات البحرية.

2- تقوم هذه الحشائش بنشر الحشائش فهي تحوي صغار الأسماك والأخطبوط الروبيان، كما تكون قاعدة تركز لمختلف الأحياء البحرية.

3- تعزز من طبوغرافية الماء حيث أنها تساعد على تماشى القتال وذلك عن طريق امتلاك الأمواج وإزالة الرواسب من الماء.

أما بالنسبة للصخور والرمال القاحلة فإن أهميتها البيئية لا تقل عن الحشائش البحرية، فهي تكون البيئة الطبيعية لمختلف الأحياء البحرية كالمرجان. إلي جانب ذلك فإن العديد من الأحياء البحرية الأخرى كالأسماك وغيرها تعتمد على هذه البيئات للحماية والغذاء والتكاثر. نستخلص من ذلك أن الحشائش والصخور البحرية والرمال القاحلة بمثابة عنصر ضروري للبيئة البحرية، وانطلاقاً تحت الرمال من جراء عمليات الردم يعني القضاء على عنصر أساسي من البيئة البحرية.

أما التأثير غير المباشر فينتج من انتشار الحبيبات الدقيقة في المناطق المجاورة لمنطقة الردم أو الحفر، وهذه الحبيبات تؤثر على العوائق البيئية والحيوية والمرجان حيث إنها تقلل من حصول هذه الأحياء البحرية على أشعة الشمس الضوئية للبقاء. وعمليات الحفر قد تؤدي إلى هجر كثير من الأحياء البحرية إلى أماكن أقصاها مما يولد اضطراباً في السلاسل الغذائية في تلك المناطق. وكذلك فإن عمليات الردم والحفر تسبب تعكير الماء مما يستدعي اختناق الكثير من الأحياء البحرية، ولقد وجدت بعض الأسماك المينة وقد سدت خياشيمها ببحريات من الفنات الصخري.

ما لا شك فيه أن عمليات الردم والحفر البحرية لها تأثيرات سلبية كبيرة على البيئة البحرية. فالمناطق الساحلية الضحلة التي تتعرض لعمليات الردم هي أكثر المناطق خصوبة بالنسبة للبيئة البحرية. والمناطق التي لا تتعرض مباشرة لعمليات الردم والحفر هي الأخرى تستأثر بسبب التربة وتغير التدفق المائي. إضافة إلى ذلك، وبناء على أراء بعض الخبراء فإن ازدياد العคารة في المياه كان من أحد الأسباب التي أدت إلى انتشار الصخور المرجانية من السواحل الشمالية الشرقية للبلاد.

1- تأثير جسر السعودية - البحرين على البيئة البحرية

من أكبر عمليات الردم والحفر البحرية التي تمت في جسر السعودية - البحرين، حيث أن حوالي نصف طول الجسر عبارة عن ردم. فلا بد أن يكون لإنشاء الجسر تأثير سلبي على...
البيئة البحرية. وهناك دراسات أجريت حول جسر السعودية - البحرين لتقديم المردود البيئي المحتمل من إنشاء الجسر (7، 8) ويمكن تلخيص ذلك فيما يلي:

1- تبين وجود ترسبات طينية كثيفة وحشائش بحرية ميتة عند دراسة المواقع الشمالية للجسر، وكذلك اختفاء بعض الأحياء السطحية.
2- ازدياد العكارة والترسب أدبا إلى تقليل عملية التمثيل الضوئي والتكتار مما سبب اختناق كثير من الأحياء المائية.
3- الجسر يعوق هجرة الأسماك والروبيان.
4- ذكرت بعض الدراسات وجود مبيدات الحشرات السامة كمادة د.د.ت مع الأسمدة المسلح مما يسبب تسرب هذه المواد إلى البيئة البحرية.
5- تشير الدراسات إلى أهمية المناطق المجاورة للجسر لكونها مناطق حضانة للروبيان وهذه المناطق لابد وأنها تأثرت بسبب إقامة الجسر.
شكل رقم (2)
المناطق المردومة في البحرين ومساحاتها.
واللحصول على نتائج أكيدة وأكثر تقة عن الآثار البيئية السلبية المرتبطة على إنشاء الجسر على المدى القريب والبعيد، أُجريت دراسات وبحثت في المناطق القريبة من الجسر.

2- تلوث البحر من المخلفات الصناعية السائلة من أهم المصادر الصناعية الملوثة للبيئة البحرية في البلاد مصفاة النفط والحوض الجاف ومتحة تحلية الماء في سترة. وسنتعرض هذه المصادر بشيء من التفصيل.

أولا- مصفاة النفط

بدأ العمل في وحدة التكرير (مصفاة النفط) في أواخر الثلاثينات، وتبلغ الطاقة الإنتاجية للمصنع حوالي 255 ألف برميل في اليوم أي حوالي 400 ألف طن بما في ذلك نواتج التكرير، وهي تعتبر من بين أكبر مصافي النفط في العالم وتقع في المنطقة الصناعية رقم (1)

(ناتج الشكل رقم (1))

وبالرغم من قدم المصانع، إلا أن إضافة بعض الوحدات الجديدة والأخرى وحدة تصفيه ماء التصنيع من الزيوت أدت إلى التقليل من كمية الزيوت المتدفقة إلى البحر، وبالتالي الإفلات من مستوى تلوث البيئة البحرية بالقرب من المصفاة.

وهناك قنائات لتصفية مياه التصريف الناتجة من عمليات مصفاة النفط: القناة الرئيسية، ويبلغ حجم المياه المتدفقة منها إلى البحر حوالي 625 ألف متر مكعب في اليوم، وآم القناعة الفرعية فيبلغ تصرف المياه منها حوالي 70 ألف متر مكعب في اليوم. ويبين الجدول رقم (5) خصائص ومكونات المخلفات السائلة الناتجة من القنائات. وبناء على هذا الجدول يمكن حساب كمية الملوثات الناتجة سنويا، وهي مبينة في الجدول رقم (6)

جدول رقم (5)

خصائص ومكونات مياه تصريف مصفاة النفط (1984)

<table>
<thead>
<tr>
<th>المكون</th>
<th>القيمة</th>
</tr>
</thead>
<tbody>
<tr>
<td>PH</td>
<td>8.2</td>
</tr>
<tr>
<td>جزء في المليون</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>الگیسین الحیوی المطلوب لمدة خمسة أيام (BOD)</td>
<td></td>
</tr>
<tr>
<td>الگیسین الکیمیائی المطلوب (COD)</td>
<td></td>
</tr>
<tr>
<td>مجموع المواد الصلبة العالقة (TSS)</td>
<td></td>
</tr>
<tr>
<td>هیدروکربونات (زیوت)</td>
<td></td>
</tr>
<tr>
<td>الفنول</td>
<td></td>
</tr>
<tr>
<td>الامیدوریجین الکلی</td>
<td></td>
</tr>
</tbody>
</table>

دراسات الخليج والجزيرة العربية – العدد 50
جدول رقم (6)

كمية الملوثات في المخلفات السائلة لمصفاة النفط

<table>
<thead>
<tr>
<th>الملوثات</th>
<th>الكمية (طن سنوياً)</th>
</tr>
</thead>
<tbody>
<tr>
<td>هيدروكربونات</td>
<td>588</td>
</tr>
<tr>
<td>امونيا</td>
<td>212</td>
</tr>
<tr>
<td>فينول</td>
<td>11</td>
</tr>
<tr>
<td>كبريتيد</td>
<td>157</td>
</tr>
</tbody>
</table>

التأثيرات البيئية للمخلفات السائلة لمصفاة النفط

دلت نتائج الدراسة التي أجراها ماتسون وتوتيني (9) على ارتفاع نسبة المواد الهيدروكربونية في الرواسب بالقرب من مصاطب مصرف مياه النفط (انظر الشكل رقم (3) ، كما توجد أحياء مائية في تلك المنطقة. وهناك تأثيرات سلبية أخرى على البيئة البحرية خارج منطقة المصب ولكن ليست بنفس الدرجة، ومنها ازدياد عكارة المياه ووجود بعض الأحياء المائية الميتة كالمرجان.

وهناك دراسة أخرى قام بها لندن (5) ووصل إلى نفس النتائج من حيث ارتفاع نسبة الهيدروكربونات في المنطقة الساحلية القريبة في المصنع.

وقد قامت شركة نفط البحرين (بابكو) بتحليل ماء البحر حيث أخذت عينات على بعد ميل واحد من الساحل، ووجد أن تركيز الزيوت فيها يصل إلى 0.6 جزء في المليون، وهذه النسبة أكبر من مثيلاتها في المناطق الأخرى كساحل الزلاق وعسكر.

وأجريت دراسة عام 1985 عن تركيز الملوثات البيئية في مصاريف مياه النفط وتأثير هذه الملوثات على البيئة البحرية والسمك الضاحي (10)، وكانت النتائج مشابهة للدراستين السابقتين.
ثانيا - الحوض الجاف

تقوم الشركة العربية لبناء وإصلاح السفن (أسرى) والتي تملك أكبر حوض جاف في المنطقة
باستقبال حوالي 120 سفينة في السنة (حسب إحصائية عام 1984). وتعتبر هذه الشركة في
المنطقة الصناعية رقم (4) جنوب مدينة الحد، وتقدم خدمات التصليح والتنظيف وغيرها
(شكل 1) للسفن القادمة. ولا شك أن هذه العمليات تنتج عنها مخلفات لها أثار سلبية على البيئة
أن لم يتم التخلص منها بالطرق السليمة.

وتتشكل أهم المشكلات البيئية الناتجة من خدمات الحوض الجاف في تلوث البحر بماء
الترشيح من ناقلات النفط. ورغم وجود محطة استقبال للسفن لفصل الزيت عن الماء في
عمر البحر، إلا أن المعلومات المتاحة تشير إلى عدم كفاية هذه المحطة في القيام بعملية
الفصل. وذلك فإنه يترتب عليه تلوث البيئة البحرية بالزيت. والجدول رقم (7) يعطي ملخصا
لمخلفات السائدة الناتجة من محطة الاستقبال وطرق التخلص منها (11)، وهي للفترة من
1/1/84 وحتى 31/12/84.

جدول رقم (7)
المخلفات السائدة الناتجة من محطة الاستقبال في الحوض الجاف

<table>
<thead>
<tr>
<th>طريقة التخلص</th>
<th>الكمية بالأطنان</th>
</tr>
</thead>
<tbody>
<tr>
<td>فصل الزيت عن الماء</td>
<td>مجموع كمية المياه الملوثة بالزيت 40.886</td>
</tr>
<tr>
<td>ينقي في البحر</td>
<td>كمية المياة بعد فصل الزيت 35.389</td>
</tr>
<tr>
<td>يحفظ في المحطة</td>
<td>كمية الزيت المتبقية بعد الفصل 5497</td>
</tr>
<tr>
<td>يعاد استعماله</td>
<td>كمية الزيت المستفاد منه في المحطة 3325</td>
</tr>
<tr>
<td>ينقي في المحطة حتى يعاد استعماله أو يشحن إلى الخارج</td>
<td>كمية الزيت المتبقية في عام 83 3778</td>
</tr>
<tr>
<td>ينقي في المحطة حتى يعاد استعماله أو يشحن إلى الخارج</td>
<td>مجموع كمية الزيت المتبقية حتى نهاية عام 84 5950</td>
</tr>
</tbody>
</table>

التأثيرات البيئية لمخلفات الحوض الجاف

كما سبق أن ذكرنا أن الزيوت هي المخلفات الناتجة من خدمات الحوض الجاف، وهي تلقى
في البحر، ولذلك فإن تأثيرها السلبي على البيئة البحرية قد لا يختلف كثيرا عن تأثير مياه
الصرف في مصفاة النفط.
وتقوم دولة البحرين حاليا بتعاون مع المنظمة الإقليمية لحماية البيئة البحرية بدراسة احتياجات البحرين لإقامة محطة أو محطات استقبال للنفايات الفضية لتشفية مياه التوزان أو المياه الملوثة بالزيت قبل إلقائها في البحر.

ثالثا- محطة تحلية المياه في سترة

تفع محطة سترة للكرهاء والماء في المنطقة الصناعية رقم (2) شكل (1) وقد بدأ تشغيلها عام 1976 وتبلغ طاقتها الإنتاجية 25 مليون جالون يوميا (ابتداء من يونيو 1985). والطريقة المتبقية لتنقية الماء هي طريقة التقطير العملي الذي يحد الماء المتبقي، وتحتوي كل وحدة على مجموعة من الغرف تعمل كل غرفة عند درجة حرارة أقل من التي تسبقها وتحت ضغط أقل، كما تحتوي أيضا على مسخن يتم به تسخين الماء المالح المتداول بواسطة البخار المتبقي القادم من عملية توليد الكرهاء. ويتم إدخال الماء الملح في أول غرفة ينخفض فيها الضغط فجأة فيتفجر جزء من الماء فورا ويرتفع إلى أعلى ليلاس السطح البارد فيتكثف الماء العنب، وما تبقى من الماء الملح يدخل الغرفة التي تليها فيتبخر الماء بضغط أقل من الغرفة التي تسبقها، وهذا يتكرر العملية إلى أن يكتمل التقطير عند آخر غرفة وتبقي كمية من الماء الملحوي المركز يرجع إلى البحر مرة أخرى، وهذه المرحلة هي التي تسبب تلوث البحر نظرا لاحتواء الماء الملحوي على نسبة من المواد الكيميائية إلى جانب درجة حرارة عالية نسبيا.

والجدول رقم (8) بين خصائص ومكونات مياه التفريغ التي تطرح في البحر (12).

جدول رقم (8)
خصائص ومكونات مياه تفريغ محطة تحلية المياه في سترة

<table>
<thead>
<tr>
<th>المكونات</th>
<th>جزء في المليون</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymalkeic anhydride(*)</td>
<td>0.6</td>
</tr>
<tr>
<td>الكالر</td>
<td>8.2</td>
</tr>
<tr>
<td>الحديد</td>
<td>0.2</td>
</tr>
<tr>
<td>النحاس</td>
<td>أقل من 0.04</td>
</tr>
<tr>
<td>الأمونيا</td>
<td>أقل من 0.04</td>
</tr>
<tr>
<td>الكلي الكلوريد</td>
<td>0.01</td>
</tr>
<tr>
<td>اللازميات</td>
<td>54.000</td>
</tr>
</tbody>
</table>

التأثيرات البيئية لمياه التفريغ لمحطة تحلية المياه في سترة

(*) تضاف هذه المادة الكيميائية إلى المياه الداخلة إلى الوحدة لمنع التحمر (تكون القشور).

دراسات الخليج والجزيرة العربية – العدد 50
يوضح الجدول رقم (9) الفرق في درجة حرارة المياه بين نقطة السحب والتفرقع، وهذا يولد ارتفاعاً في درجة حرارة المياه في تلك المنطقة ويحدث ما يسمى بالتوت الحراري. ومن المعروف أن حدوث ارتفاع غير طبيعي في درجة مياه البحار والأنهار له تأثيرات سلبية على البيئة المائية، نلخص أبعادها في النقاط التالية:

1- يؤدي ارتفاع درجة حرارة الماء إلى نقص في كمية الأوكسجين المذاب والمتاح للканالات الحية واللازم لعملية التنفس.
2- ينشط بعض العمليات البيولوجية لدى الأحياء البحرية كالتنفس مما يؤدي إلى زيادة في استهلاك الأوكسجين.
3- يتفاعل عامل ارتفاع درجة الحرارة مع عوامل أخرى (كارتفاع نسبة ثاني أكسيد الكربون) ويستثمر ذلك اختلال العمليات البيولوجية.
4- يؤثر على نمط تكاثر وتوزيع الأسماك وربما أدى إلى موت كثير من الأسماك.

والبيئة المائية الأخرى:

هناك أيضاً التوازن بين عملية البناء الضوئي (وهي عملية بناء تزيد من وزن الأحياء النباتية وعملية التنفس (وهي عملية هدم)، وهذا التوازن يميل لصالح الهدم (مع رفع درجة الحرارة)

و هذا بالنسبة لتأثيرات التلوث الحراري بوجه عام. أما بالنسبة لتأثير مياه التفرقع لمحطة ستيرة، فإنه من الصعب تقييم الآثار البيئية الناتجة من ذلك. فالمناطق الساحلية القريبة للمحطة غير منتجة (نقطة بيولوجيا)، كما تكثر فيها نسبة التترسب والعكارة نتيجة عمليات الردم والبحر الجليبي.

رابعا - محطة التحلية في رأس أبو ججور

تتبع محطة رأس أبو ججور لتحلية الماء في المنطقة الصناعية رقم (1) (شكل 1) ، وتعمل هذه المحطة بطريقة التقطير العكسي وبطقة إنتاجية قد تصل إلى 10 جزءين جالون في اليوم. وتستفيد المحطة من المياه المالحة من طبقة المياه الجوفية في الأرض (طابق C) عن طريق مجموعة من الأبار وينتج هذا النظام 32.500 جزء من المياه من الأملاح الذائبة أما بالنسبة لموارد التفرقع ويبلغ حجمه 25.200 متر مكعب في اليوم ويصب في نافذة على بعد حوالي 100 متر من الساحل. وبين الجدول رقم (9) خصائص ومكونات ماء التفرقع.

جدول رقم (9)

خصائص ومكونات مياه تفرقع محطة التحلية في رأس أبو ججور
المعدل تدفق ماء التفريغ
كمية الكلور لمياه السحب
جزء في المليون
المكونات
KBr
0.3
H₂S
7.8
المواد الصلبة العالية
COD
3.8
مجموعة المواد الصلبة البدنية
TDS
31.250

التأثيرات البيئية لمياه التصريف لمحطة رأس أبو جرجور
من الجدول رقم (9) يمكن حساب أجمالي التلوث لبعض المكونات وهي كالتالي:
KBr
7.56 كجم في اليوم
المكونات العالية
COD
196.56 كجم في اليوم
95.76 كجم في اليوم

وقد قامت إدارة الثروة السمكية بتقييم تأثير تشغيل الوحدة على البيئة البحرية في المنطقة ولم تجد الدراسة أثاراً بيئية سلبية.

هناك أيضاً مشروع آخر لتحلية المياه بدأ تنفيذه في منطقة الدور الواقعة جنوب قرية جو.
ومشروع في مراحله النهائية ومن المتوقع أن تبدأ هذه المكتبة في التشغيل في عام 1987.

خامساً - مصنع البتروكيمياويات
أنشئ في البحرين عام 1986 مصنع لإنتاج 1000 طن من الأمونيا والميثانول يومياً، والمادة الأولية المستخدمة للتصنيع هي الغاز الطبيعي بملع الـ95.000 متر مكعب في كل ساعة.
ويقع المصنع على منطقة مرودة في المنطقة الصناعية رقم (2) أي الساحل الشرقي من جزيرة سترة وتبلغ مساحتها 600,000 متر مربع.
وبين الجدول رقم (10) خصائص ومكونات المخلفات السائلة التي تفرغ في البحر (13).

جدول رقم (10)
خصائص ومكونات مياه تفريغ مصنع البتروكيمياويات

<table>
<thead>
<tr>
<th>مصنع الأمونيا</th>
</tr>
</thead>
<tbody>
<tr>
<td>معدل تدفق العادم</td>
</tr>
<tr>
<td>30-120 مترًا مكعبًا في الساعة</td>
</tr>
<tr>
<td>المكونات</td>
</tr>
<tr>
<td>الأمونيا</td>
</tr>
<tr>
<td>جزء في المليون</td>
</tr>
</tbody>
</table>

دراسات الخليج والجزيرة العربية - العدد 50
التآثرات البيئية لمخلفات السائلة لمصنعين البتروكيماويات

ببين الجدول رقم (10) أن ماء التبريد الذي يفي في البحر تصل درجة حرارته إلى 0.45 م.
وهذا بدون شك بسبب تلوثا حارا في المنطقة وتصبح ظروف تلك المنطقة غير مثالية
لمعيشة الأسماك.

أما بالنسبة للأمونيا فبالرغم من عدم ارتفاع النسبة التي تطلق إلى البيئة وذلك مقارنة بأغلب
المصنعين البتر وكيماويات، إلا أن الأمونيا تعتبر من الملوثات الخطيرة وخاصة أنها تفرغ في
منطقة هامة وحساسة من الناحية البيئية. وهكذا دراسة تبين عدم خطورة الأمونيا في محيط يقل الرقم الهيدروجيني (PH) فيه عن 8.
وتتركزه عن 1 جزيء في المليون (14).

وقد أوضح جونسون (15) في دراسته حتمية ظهور بعض التآثرات البيئية للمخلفات السائلة
على البيئة البحرية، ولكن معرفة أبعاد هذه التآثرات يتطلب القيام بدراسة دقيقة متخصصة
ومراجعة البيئة البحرية في المناطق المجاورة للمصنع.

سادسًا - شركة سحب الالكاليوم

يقع هذا المصنع في المنطقة الصناعية رقم (2) (شكل 1) ويتخصص في صناعة قضبان
الألمنيوم لاستخدامها في عمل النوافذ والأبواب، وتزود المواد الخام من قبل "ألما" على شكل
أحواض.

والعمليات التي تجري في المصنع هي كالتالي:

<table>
<thead>
<tr>
<th>رقم</th>
<th>الأملاح</th>
<th>مصنع الميثانول</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>معدل تدفق العدم</td>
<td>معدل تدفق ماء التبريد</td>
</tr>
<tr>
<td></td>
<td>15 – 40 مترًا مكعبًا في الساعة</td>
<td>18.500 متر مكعب في الساعة (45 م)</td>
</tr>
<tr>
<td></td>
<td>المكونات</td>
<td>جزء في المليون</td>
</tr>
<tr>
<td>45</td>
<td>أملاح الصوديوم</td>
<td>أملاح الالكاليوم المطلوب</td>
</tr>
<tr>
<td>130</td>
<td>الأوكسجين الحيوى المطلوب</td>
<td>الأوكسجين الكيميائي المطلوب</td>
</tr>
<tr>
<td>150</td>
<td>الكربون العضوي الكلي</td>
<td>TOC</td>
</tr>
<tr>
<td>70</td>
<td>زيوت</td>
<td>كحول غير الميثانول</td>
</tr>
<tr>
<td>10</td>
<td>ميثانول</td>
<td>ميثانول</td>
</tr>
</tbody>
</table>

دراسات الخليج والجزيرة العربية – العدد 50
1- كسو الألمنيوم بطريقة من أكسيد الألمنيوم بطريقة التحليل الكهربي وذلك باستخدام حمض الكبرتيك المخفف أو حمض الكروميك المخفف.

2- طلاء الألمنيوم بمعن الخارصين بطريقة الطلاء الكهربي.

ومن أهم الملوثات التي تنتج من عمليات المصانع هيديروكسيد الألمنيوم الذي يقدف في البحر.

والجدول رقم (11) يبين خصائص مكونات مياه تفريغ مصنع سحب الألمنيوم

جدول رقم (11)

خصائص ومكونات مياه تفريغ مصنع سحب الألمنيوم (16)

<table>
<thead>
<tr>
<th>هيدروجيني الرقم</th>
<th>معدل تدفق مياه التفريغ</th>
<th>المكونات</th>
<th>جزء في المليون</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>9912 مترًا مكعبًا في الشهر</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD</td>
<td>أمونيا</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>فينيل</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>مجموع الفوسفور</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.24</td>
<td>مجموع المواد الصلبة العالية</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.25</td>
<td>مجموع الألمنيوم</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

التأثيرات البيئية للمخلفات السائلة لمصنعة سحب الألمنيوم تلوث البحر من المخلفات السائلة لمصنعة سحب الألمنيوم واضح جداً، حيث أن هناك منطقة بيضاء اللون بالقرب من مصب المصنع نتيجة لوجود هيدروكسيد الألمنيوم فيها. ومن الملاحظ من الجدول رقم (11) أن تركيز الألمنيوم يساوي 1477 جزءًا من المليون ويمكن حساب مجمل كمية الألمنيوم من ذلك وهو 167 طنا في السنة وذللك الكمية تعتبر كبيرة بالنسبة لحجم تدفق مياه التفريغ.

ولا شك أن لهذا التلوث تأثيره السلبي على البيئة البحرية في تلك المنطقة، ولمعرفة أبعاد ذلك يجب عمل دراسة شاملة على البيئة البحرية في منطقة تفريغ المصنع. إلى جانب ما ذكر سابقاً من مصادر التلوث البحري، توجد في البحرين مجموعة من المصانع المتوسطة والصغيرة والتي تقع بمخلفاتها السائلة في البحر ولكن الكميات المنصرفة إلى البحرين تعتبر صغيرة بالنسبة للمصانع المذكورة في هذه الدراسة.
تلوث البحر في مخلفات مياه المجاري

كان التخلص من المجاري قبل عام 1976 يتم عن طريق خزانات التحليل المتصلة بالبيوت، والمخلفات السائلة الناتجة من هذه الخزانات كانت تفرغ في البحر عن طريق شبكة المجاري القديمة. ونظرا لعدم فاعلية هذه الطرقية في معالجة المياه المثبتة، فقد تولد عنها تلوث السواحل وخاصة عند مناطق التنزيل حيث كان ذلك واضحًا من نمو الطحالب البحرية بكتافة إلى جانب انتبعاد الروائح الكريهة.

وبيني الجدول رقم (12) النسبة المئوية لعدد السكان المستفيدين من وحدة معالجة مياه المجاري المركزية ومن النظم الأخرى للمعالجة في المناطق المختلفة في البلاد.

ويمكننا أنه فيما بعد في الفترة من 1979 إلى 1982 كانت مياه المجاري المتقدقة إلى المحبطة تفرغ في البحر (خور تايل) دون معالجة. وبالإضافة إلى ذلك فإن كميات كبيرة من المخلفات السائلة الناتجة من تفريغ خزانات التحليل كانت تشحن من مختلف أنحاء البلاد وتفرغ في البحر بدون معالجة. ففي خلال عام 1982 بلغت كميات مخلفات مياه المجاري التي أُلقيت في البحر حوالي 140 شحنة يوميًا أي ما يعادل 1200 متر مكعب من المياه الملوثة وكانت نتيجة ذلك أنه في أبريل عام 1984 اشتكى سكان قرية جرداب من روائح كريهة وعندما تم التحقيق في الحادثة تبين أن السبب هو إلقاء مياه المجاري في البحر (17).

إضافة إلى ذلك فقد تفرغ في البحر مياه المجاري غير المعالجة والأنثوية من مصادر متفرقة، منها مصفاة النفط (بابكو) وعوالي والمحرق والجدير وعسكر وجو. والشكل رقم (3) يبين أمكان بعض مصبات المجاري في مياه البحرين الساحلية.

ومحفطة تربلي لمعالجة مياه المجاري أكبر محطة المياه في البحرين وتقع في منطقة مردومة جنوب ساحل خور تايل. وكان من المقرر أن يتم إنجاز المشروع على ثلاث مراحل هي:

- المرحلة الأولى: وتستخدم ما يقارب 200,000 نسمة، حتى عام 1990.
- المرحلة الثانية: وتستخدم ما يقارب 300,000 نسمة، حتى عام 1994.
- المرحلة الثالثة: وتستخدم ما يقارب 600,000 نسمة، حتى عام 2008.
جدول رقم (12)

النسبة المئوية لعدد السكان المستفيدين من وحدة معالجة مياه المجاري المركزية ومن النظم الأخرى للمعالجة من المناطق المختلفة في البلاد

<table>
<thead>
<tr>
<th>المنطقة</th>
<th>عدد السكان</th>
<th>وحدة معالجة المياه</th>
<th>مجاري مصلة بالبحر</th>
<th>خزانات التحليل المتصلة بالبحر</th>
<th>خزانات التحليل الترسيبية</th>
</tr>
</thead>
<tbody>
<tr>
<td>1- المنامة</td>
<td>173.000</td>
<td>5</td>
<td>36</td>
<td>59</td>
<td>-</td>
</tr>
<tr>
<td>2- المحرق</td>
<td>66000</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>3- مدينة حمد</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>36.00 (إلى عام 1990)</td>
</tr>
<tr>
<td>4- مدينة عيسي</td>
<td>27.000</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>27.000</td>
</tr>
<tr>
<td>5- الرفاع</td>
<td>16.000</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>16.000</td>
</tr>
<tr>
<td>6- ستة</td>
<td>11.500</td>
<td>-</td>
<td>10</td>
<td>-</td>
<td>11.500</td>
</tr>
<tr>
<td>7- بدائع والدراب</td>
<td>9.500</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>8- كرزكان والقرى المجاورة</td>
<td>11.000</td>
<td>20</td>
<td>27</td>
<td>53</td>
<td>11.000</td>
</tr>
<tr>
<td>9- نوادرات ومعامير</td>
<td>7.500</td>
<td>-</td>
<td>25</td>
<td>-</td>
<td>7.500</td>
</tr>
<tr>
<td>10- عالي</td>
<td>348.500</td>
<td>6</td>
<td>29</td>
<td>43</td>
<td>6</td>
</tr>
</tbody>
</table>

المجموع
وقد صمم المصنع لمعالجة 54,000 متر مكعب في اليوم من مياه المجاري ولكن تدفق مياه المجاري يبلغ حاليا 70,000 متر مكعب في اليوم. ولذلك سيبدأ العمل في المرحلة الثانية قبل الموعد المحدد له.

وتتضمّن المياه المبلطة إلى التنقيط الأولى والثانية والثالثة وأما المرحلة الأولى للمعالجة فهي عبارة عن أحواض تهوية وأحواض تشتت الوحل بالهواء، أما المرحلة الثالثة فهي عبارة عن عملية ترشيح وإضافة الكلور إلى المياه. ويمكن استخدام المياه الناتجة من عملية التنقيط الثالثة لري الأراضي الزراعية. وحاليا يستفاد من هذه المياه في البحرين zura للزراعة ولكن هذه الفكرة لازالت في مرحلتها الأولى من التطبيق.

التأثيرات البيئية لمياه المجاري

دلت إحدى الدراسات الميدانية التي أجريت في منطقة خور تولي (18) على جود طبقات من الترسبات العضوية القائمة اللون في المناطق القريبة لمحطة المعالجة في تولي، كما نبين أيضا وجود طبقات ترشيبية مشابهة في منطقة المد. وقد أرجعت الدراسة سبب ذلك إلى عمليات تغريغ مياه المجاري المستمرة من الشاحنات في الخور والتي أدت إلى تراكم اللموثرات العضوية.

وقد ذكرنا سابقا أن عمليات تغريغ مياه المجاري بدون معالجة تؤدي إلى انبثاق روائح كريهة كتالي حصلت في منطقة جرداب (19).

وقد ظهر من الأبحاث التي أجريت على مناطقن قريبتين من مصبات المجاري القديمة وهما منطقة الحورة والمنامة (يوليو - أغسطس 1978) (20) أن تركيز الأمونيا في تلك المنطقة المجاورة للمصب أكثر من غيرها من المناطق ويصل إلى نسبة سامة هي 4430 مايكروجرام في اللتر، وتتصل النسبة الفوسيفس إلى حوالي 13 مايكروجرام في اللتر. وبالإضافة إلى ذلك فإن الكادرات (مواد مخالفة صلبة) تحمل معها كثيرا من المواد الضارة بالبيئة البحرية. ووجد أيضا ارتفاع درجة ملوحة المياه في تلك المنطقة إذ وصلت إلى 40.8% بينما في منطقة أخرى مثل عراد وصلت إلى 43.23% ونظرا لاحتراء مياه المجاري على نسبة عالية من الكبريت فإن هذا سوف يؤدي إلى ارتفاع حموضة الماء وتبناها لذلك بسبب تأثيرات سلبية على الكائنات البحرية أما استخدام المياه المبلطة لأغراض الري فمن الممكن أن تنتج عنها مخاطر إذا لم تعالج بطريقة سليمة. فالخطر على صحة الإنسان يعتمد على حد بعيد على مالمسته لهذه المياه ودرجة التنقيط التي تخضع لها (21). هذه المياه تحتوي على جراثيم معدية، وقد دلت دراسات عددية على انتقال هذه الأمراض المعدية إلى الإنسان لدى تناوله الخضراوات التي جرى ريها بواسطة المياه المبلطة المدورة (22).
تلوث البحر من المخلفات السائلة للمسلح المركزي

يقع المسلح المركزي في المنطقة الصناعية رقم (2) (شكل 1) وتبلغ معدل طاقته اليومية 800 رأس من الخراف و 50 رأساً من الأبقار، أما الحد الأقصى ف يصل إلى 1200 رأس من الخراف و 100 رأس من الأبقار.

ولقد كانت المخلفات السائلة للمسلح القديم تلقى في البحر بدون معالجة، أما الآن فيتم معالجتها في ثلاث مراحل هي كالتالي:

المرحلة الأولى: التخلص من المواد الصلبة وتجمع الدم والدهون.

المرحلة الثانية: معالجة النفايات باستخدام أحماض هواية ولا هواية.

المرحلة الثالثة: قتل البكتيريا والفيروسات الناقلة للأمراض باستعمال أحماض هواية وكذلك للتخلص من المواد الصلبة العالقة، ثم صرفها إلى البحر، والجدول (13) يبين مكونات وخصائص هذه المياه.

ومن المعروف أن هذه الطريقة لمعالجة المخلفات السائلة للمسلح هي من أنسب الطرق التي يمكن استخدامها في الدول الحارة واكثرها فاعلية في التخلص من الميكروبات الضارة (23).

جدول رقم (13)

<table>
<thead>
<tr>
<th>خصائص ومكونات مياه صرف المسلح المركزي</th>
</tr>
</thead>
<tbody>
<tr>
<td>كمية الدم الناتجة</td>
</tr>
<tr>
<td>حجم ماء التفريغ</td>
</tr>
<tr>
<td>الرقم الهيدروجيني</td>
</tr>
<tr>
<td>مجموع البكتريا (Total coliform)</td>
</tr>
<tr>
<td>جزء في المليون</td>
</tr>
<tr>
<td>المكونات</td>
</tr>
<tr>
<td>مجموع المواد الصلبة العالقة</td>
</tr>
<tr>
<td>مجموع المواد الصلبة الذائبة</td>
</tr>
<tr>
<td>هيدروكربونات</td>
</tr>
<tr>
<td>BOD</td>
</tr>
<tr>
<td>COD</td>
</tr>
<tr>
<td>امونيا</td>
</tr>
<tr>
<td>التأثيرات البيئية للمخلفات السائلة للمسلح المركزي</td>
</tr>
</tbody>
</table>

بعد دراسة الجدول رقم (13) نستخلص ما يلي:
1- نسبة الـ (BOD) في مياه الصرف ضعف النسبة المقررة لها حسب التصميم الهندسي وهو 20 جزءاً في المليون، وكذلك بالنسبة للـ (COD) نسبة تركيز الأمونيا عالية نسبياً، وهذه من الأسباب التي تؤدي إلى استهلاك الأوكسجين المذاب في الماء نتيجة لحدوث ظاهرة الإثراء الغذائي، كما أنها تؤثر على الكائنات البحرية مباشرة إذا ارتفع تركيزها في الماء.

ونبناء على ما تقدم، فإنه قد يكون هناك بعض التأثيرات السلبية على البيئة البحرية نتيجة مياه التفرير من المسلح، ولكن لا يمكن تقييم مدى هذا التأثير قبل أجراء بعض الدراسات التحليلية والبيولوجية في المناطق المجاورة لنقطة التفرير.

5- تلوث البحر من الإنتاج الزراعي والحيوي

حظرات الحيوانات والطيور في البحرين موزعة في مناطق مختلفة وخاصة في المناطق الشمالية والشمالية الغربية. وتم حصر لهذه الحيوانات والطيور.

1- حظرات دجاج اللحم والبيض

مجمعة الدجاج (خلال سبتمبر 1984) 769,519
مجمعت الدجاج البضائع 417,268
مجمعت دجاج اللحم 352,251

وهذه الحظرات تنتج ما يقارب من 21,310 متر مكعب من السماد (24).

2- حظرات الغنم

يقرب عدد الأغنام من 9150 رأساً

3- مزارع الألبان

مجمعت الألبان 4825 رأساً

ويتم التخلص من المخلفات السائلة لهذه المزارع في معظم الحالات عن طريق المجاري المتصلة بالبحر. أما المخلفات الشديدة فتستخدم كسماد طبيعي.

6- تلوث البحر ببعض الزيت

يعد من أهم المخاطر التي تهدد سواحل البحرين وسواحل دول الخليج العربي تلوث بيع أو كتل الزيت والتي زادت في الفترة الأخيرة. وتقدر كمية الزيت المتعرضة لمياه الخليج بحوالي 10 آلاف برمي يومياً. وهناك مصادر متعددة لهذه الزيت السائلة، ومن أهمها ما يلي:

1- تسرب الزيت من حقول أو أنابيب النفط في مياه الخليج لأسباب فنية أو بسبب حادث.

2- تسرب الزيت من حاملات النفط لأسباب فنية أو بسبب أحوال الطقس في البحرين الحالية بين العراق وإيران.
3- إلقاء السفن ما تبقى من الزيت في خزاناتها داخل مياه الخليج.

4- عملية توقف مياه الاتزان لناقلات النفط.

ومن أكبر الحوادث وأثرها تأثيراً على البيئة البحرية ما وقع نتيجة الحروب الحالية في منطقة الخليج والتي أدت إلى انفجار بعض الآبار مثل حقل نوروز في إيران يوم 27 يناير 1983 وبدأ تسرب النفط من هذا الحقل في مياه الخليج بمعدل 200 برميل يومياً ثم تزايد هذا الرقم ليصبح 4000 برميل يومياً وامتدت بقعة الزيت لتغطي مساحة 15 كيلو متراً مربعاً بعد حوالي ثلاثة أشهر من هذا التسرب، واستمر هذا الحادث إلى نهاية العام حتى وصلت كمية الزيت المتسربة إلى حوالي 200 ألف طن (25).

وقبل هذه الحادثة وقعت حوادث أخرى مماثلة، مثل التسرب الذي وقع في حقل حمصة 6 عام 1980 وأطلق حوالي 10.000 طن من الزيت في مياه الخليج.

التاثيرات البيئية لبعض الزيت كانت لحوادث بفع الزيت تأثيرات نفسية على مواطنينا دول الخليج (26)، كما تضررت البيئة البحرية إلى درجة كبيرة من هذه الحوادث.

فقد وجد اياً تسببت النفط شعراً من القلق والهلع بين المواطنين، حتى أن عدداً كبيراً منهم ابتعد عن البحر ولم يقبل السباحة أو الصيد في مياه الخليج، وقد قامت شركة نفت البحرين بإغلاق شاطئها (27) وعزف الناس عن أكل الأسماك حتى أن 17% من الأسر البحرية امتستعت عن أكل السمك (28).

وكان لهذا التسرب النفطي أثر بالغ على البيئة البحرية، فقد أدى إلى موت الألف من الطيور والقضاء على كثير من الأسماك والروبيان والأحياء المائية الأخرى (29).

وأدى تلوث البحر بفع الزيت إلى استحداث مشكلة لمصانع النافورة على سواحل البحرين، حيث أنها تستخدم مياه البحر في تبريد العمليات الصناعية، ووجود الزيت في الماء قد يؤدي إلى إعطاب هذه المصانع.

والجدير بالذكر هنا، أن هناك بعض الإجراءات التي اتخذت لجباية مثل هذه الحالات، ومن أهمها إنشاء مركز المساعدة المتبادلة للطوارئ البحرية (MEMAC)، والتي تقوم بالتنسيق بين جميع دول الخليج لجباية الكوارث الناتجة من تسرب الزيت والتخليل من أثاره الضارة.

حساب أحوال التلوث من المصادر المختلفة.

تم حساب أحوال التلوث بناء على البيانات المذكورة سابقا في هذه الدراسة، وبالإضافة إلى استخدام معاملات التلوث الوجدية في منشور منظمة الصحة العالمية رقم 62 بعنوان "الترير"
السريع لمصدر تلوث الهواء والماء والتربة، والجداول من 14 إلى 18 تغطي أحمال التلوث الناتجة عن المصادر الصناعية وغير الصناعية (30).

جدول رقم (14)

ملخص أحمال التلوث للأهم مخلفات الصناعية السائلة التي تطرح في البحر (طن/سنة)

<table>
<thead>
<tr>
<th>المصادر</th>
<th>المصدر</th>
<th>مصفاة النفط</th>
<th>مصنع البتروكيميائيات</th>
<th>مصنع سحب الالمنيوم</th>
<th>مياه التوازن ومخلفات السفن</th>
<th>محطات التنمية</th>
<th>المجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>مخلفات أخرى</td>
<td>كبريتيت</td>
<td>فينول</td>
<td>أمونيا</td>
<td>زيوت</td>
<td>BOD</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>157</td>
<td>11</td>
<td>212</td>
<td>588</td>
<td>1140</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مذابح الالمنيوم</td>
<td>167 منيوم</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>الالمنيوم كلي</td>
<td>كلور</td>
<td></td>
<td>135</td>
<td>11.14</td>
<td>369</td>
<td>3754</td>
<td>1230.12</td>
</tr>
</tbody>
</table>

() الرقم محسب باستخدام معامل التلوث

جدول رقم (15)

أحمال التلوث من المخلفات الحيوانية

<table>
<thead>
<tr>
<th>المصادر</th>
<th>حجم المخلفات السائلة (م3 × 1000/سنة)</th>
</tr>
</thead>
<tbody>
<tr>
<td>التلقي في</td>
<td>BOD</td>
</tr>
<tr>
<td>البحر</td>
<td>125</td>
</tr>
<tr>
<td>البحر</td>
<td>335</td>
</tr>
<tr>
<td>البحر في الغالب</td>
<td>2600</td>
</tr>
<tr>
<td>البر</td>
<td>493</td>
</tr>
<tr>
<td>البر</td>
<td>1919</td>
</tr>
<tr>
<td>المجموع</td>
<td>2412-3060 البر البحر</td>
</tr>
</tbody>
</table>

جدول رقم (16)

أحمال التلوث من المخلفات المنزلية السائلة طن/ سنة

<table>
<thead>
<tr>
<th>المنطقة</th>
<th>P</th>
<th>N</th>
<th>SS</th>
<th>BOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>المناطة</td>
<td>4</td>
<td>29</td>
<td>1806</td>
<td>874</td>
</tr>
</tbody>
</table>

دراسات الخليج والجزيرة العربية – العدد 50
ملاحظة : لا يشمل الجدول حساب أجمالي التلوث الناتجة من وحدات معالجة مياه المجاري.

جدول رقم (17)
كميات الـ٢٠٠ (BOD) للمياه المنصرفة إلى البحر من المصادر المختلفة

<table>
<thead>
<tr>
<th>المصدر</th>
<th>الكمية (طن / سنة)</th>
<th>نسبة المنوية</th>
</tr>
</thead>
<tbody>
<tr>
<td>الإنتاج الحيويани</td>
<td>50.6</td>
<td>3060</td>
</tr>
<tr>
<td>مصفاة النفط</td>
<td>18.9</td>
<td>1140</td>
</tr>
<tr>
<td>مصنع البتروليكوياويات</td>
<td>1.5</td>
<td>90</td>
</tr>
<tr>
<td>المخلفات المنزلية</td>
<td>24.7</td>
<td>1497</td>
</tr>
<tr>
<td>مصادر آخر</td>
<td>4.3</td>
<td>260</td>
</tr>
<tr>
<td>المجموع</td>
<td>100</td>
<td>6047</td>
</tr>
</tbody>
</table>

* وتشمل مصانع منتجات الألبان والمرطبات ومحطات غسيل السيارات ومصنع الحديد والصلب.

جدول رقم (18)
كميات الزيوت المنصرفة إلى البحر من المصادر المختلفة

<table>
<thead>
<tr>
<th>المصدر</th>
<th>الكمية (طن / سنة)</th>
<th>نسبة المنوية</th>
</tr>
</thead>
<tbody>
<tr>
<td>مصفاة النفط</td>
<td>16.4</td>
<td>588</td>
</tr>
</tbody>
</table>
الخلاصة

لاستئن من الجداول السابقة وبالتحديد الجدول رقم (17) أن المصدر الرئيسي لللو تم العضوي (BOD) في البلاد قياسا بـ (BOD) هو مزارع الحيوانات والدواجن، حيث تبلغ نسبة آل للمخلفات الناتجة منها 50% من المجموع الكلي. ولذا من الجدولين 15 و16 أن مجموع كمية آل لمخلفات هذا المصدر والتي تلقى في البحر تبلغ ضعف كمية (BOD) الكلية للمخلفات المنزلية السائلة. ومما لا شك فيه فإن هذه الكميات تعتبر كبيرة إذا ما قورنت بالنسبة لعدد السكان ومساحة دولة البحرين.

وقد دلت نتائج المسح الميداني على أن حوالي 70% من مزارع الأبقار الموجودة في البلاد، يمكن اعتبارها من المزارع الكبيرة نسبيا حيث أن كلا منها تحتوي على 25 بقرة أو أكثر. كما أن 38% من الأبقار الحلوية تتركز في سبع مزارع ويحتوي كل منها على حوالي 100 بقرة.

أما عن الجانب الصناعي، فيتبين من الجدول رقم (17) أن مخلفات مصفاة النفط تساهم بنسبة 19% من مجموع المار (BOD)، ولكن هذه الكميات لها تأثير كبير على البيئة البحرية، وخاصة إذا علمنا أن المخلفات السائلة من المصفاة تخلط بكميات ضخمة جدا من ماء التبريد قبل تغريقها في البحر. وهذا يعني التقليل من تركيز المروثات العضوية وبالتالي تخفيف من تأثيرها على البيئة البحرية.

أما بالنسبة لللو تم بالزيت، فنلاحظ من الجدول رقم (18) أن 83% من الزيوت الملوثة للبحر تصدر عن مياه التوان من حاملات النفط وهذه النسبة لا تتضمن تصرفات النفط من حوادث السفن وآبار النفط.

وبالرغم من ارتفاع نسبة الزيوت في الوقت الحاضر، إلا أن الحال سيتغير في المستقبل القريب، حيث أن المنظمة الإقليمية لحماية البيئة البحرية ستقوم بتثبيت مشروع إقليمي لإقامة محطات استقبال للسفن وحاملات النفط. وتقوم هذه المحطات باستقبال مياه التوان والمخلفات الزيتية الأخرى لمعالجتها قبل تغريقها في البحر.

وذلك يتبين من الجدول السابق أن مصفاة النفط تساهم بنسبة 16.4% من مجموع الزيوت التي تطرح في البحر. هذا بالرغم من وجود وحدات لتصنيف ماء الصرف من الزيوت. وهذا

<table>
<thead>
<tr>
<th>مصنع البتروليماويات</th>
<th>مياه التوان ومخلوقات السفن</th>
<th>المجموع</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>83.4</td>
<td>2980</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>3574</td>
<td></td>
</tr>
</tbody>
</table>
يدل على كبر حجم مياه الصرف التي تبلغ 455 مترًا مكعبًا في الدقيقة، أي حوالي 655200 متر مكعب في اليوم.

توصيات عامة

يمكن الحد من التلوث البحري بإتخاذ الإجراءات التالية:

1- يجب دراسة المنطقة التي ستتفق فيها عمليات الصرف والصرف البحري وذلك لمواجهة أهمية وحساسية تلك البيئة البحرية. ويجب وضع نظام وقوانين تتحكم وتضبط عمليات الصرف والصرف البحري.

2- وضع نظام وقوانين للتحكم في المخلفات السائلة المتلفة من المصانع، وكذلك وضع معايير ومقاييس ل نوعية مياه الصرف التي تلقى في البحر.

3- مراقبة تنثر ماء البحر بصورة متميزة وحساسة في المناطق القريبة من مصبات التفرغ من المصانع.

4- تقييم ودراسة المشاريع الصناعية المستقبلية من حيث تأثيراتها على البيئة قبل السماح بإنشائها.

5- توقيع المواطنين على أهمية البيئة البحرية عن طريق إدخال التربة البيئية في جميع مراحل التعليم وتشييد وسائل الإعلام لنشر وتعزيز الوعي البيئي.

المصادر

1- دولة البحرين، إدارة الإحصاء، (أغسطس 1986).

2- دولة البحرين، وزارة التنمية والصناعة، إدارة المناطق الصناعية، (أغسطس 1986).

Ismail M. Madany J. Shoreline Management. 2 (1986). 35 - 54. 3

3- دولة البحرين، وزارة الإسكان، إدارة التخطيط الطبيعي، (يوليو 86).

4- زهرة العليوي، عمليات الصرف والصرف البحري، إدارة الثروة السمكية – التقرير العلمي رقم 12، مارس 1982. و

11. The Arab company for the construction and rehabilitation of the harbours, Bahrain (December 1985).

12. Mixed Committee for the power and water, Bahrain (December 1985).

21. Director General of the Saudi Oil Corporation – the report of the scientific report No. 20, October 1983.

24. Projects Directorate (Min. of commerce and Agriculture), Sept., 1984. Survey of Private Poultry farming in Bahrain

26. God Allah forElf, publication of the Al-Ahram newspaper, newspaper of the country, the number 16 (1983).

27. The Arab League - the Arab Emirates the Union - the number of the issue in July 1983.

28. The National Assembly - the Kingdom of Bahrain - the number of the issue in 31 July 1983.

30. A. Jalil Zainal op. civ.
منقول بواسطة منتدى الموسوعة الجغرافية
www.4geography.com/vb